Brain structure differences in chronic pain are influenced by genetic differences

Scott F Farrell^{1,2,3}, Adrián I Campos^{4,5}, Pik-Fang Kho^{6,7}, Rutger MJ de Zoete⁸, Michele Sterling^{1,2}, Miguel E Rentería^{4,5}, Trung Thanh Ngo^{9,†} & Gabriel Cuéllar-Partida^{9,†*}

¹RECOVER Injury Research Centre, The University of Queensland, Herston QLD, Australia
²NHMRC Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Herston QLD, Australia
³Menzies Health Institute Queensland, Griffith University, Gold Coast QLD, Australia
⁴School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia QLD, Australia
⁵Genetic Epidemiology Laboratory, Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston QLD, Australia
⁶Molecular Cancer Epidemiology Laboratory, Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston QLD, Australia
⁷School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD, Australia.
⁸School of Allied Health Science & Practice, The University of Adelaide, Adelaide SA, Australia
⁹Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba QLD, Australia
[†]These authors contributed equally to this work.
[†]Current address: 23andMe Inc., Sunnyvale, CA, United States of America

Background

 Clinical studies of chronic pain using structural magnetic resonance imaging (MRI) show reduced grey matter (GM) across a number of brain regions

Method cont.

- \rightarrow Structural MRI traits (publicly available)
- N = 19,629 34,000

Results cont.

 One significant genetic causal relationship was found (Table 2)

 It is not known whether these associations may be due to underlying genetic differences

Research Questions

Can associations between chronic pain and brain morphology be explained through shared underlying genetics?

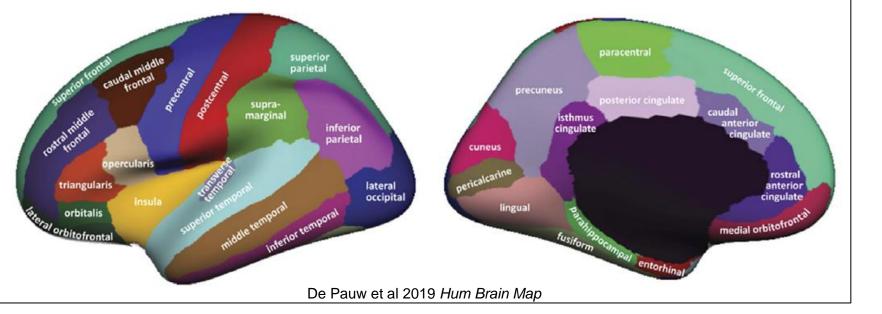
Do associations between chronic pain and brain morphology reflect causal relationships?

Method

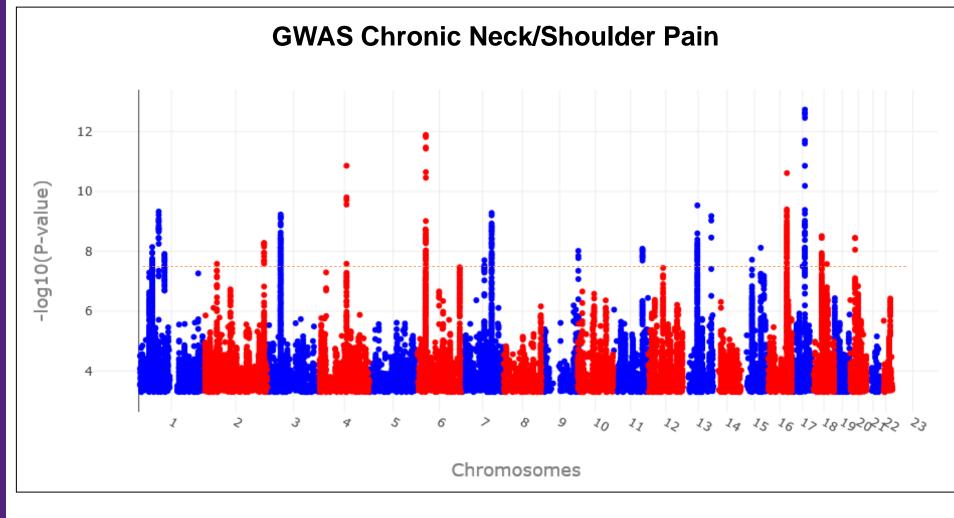
- Identify brain regions with decreased morphology in chronic pain:
 - \rightarrow Prefrontal cortex, cingulate cortex, insula, thalamus, superior temporal gyrus

Cortical thickness, regional volume, subcortical volume

- Bivariate linkage disequilibrium-score regression to determine the **genetic correlations** (*rG*)
- \rightarrow Quantifies shared underlying genetics
- Latent causal variable analysis and genetic causal proportion (GCP)
 - \rightarrow Quantifies evidence for causation
- False discovery rate < 5%

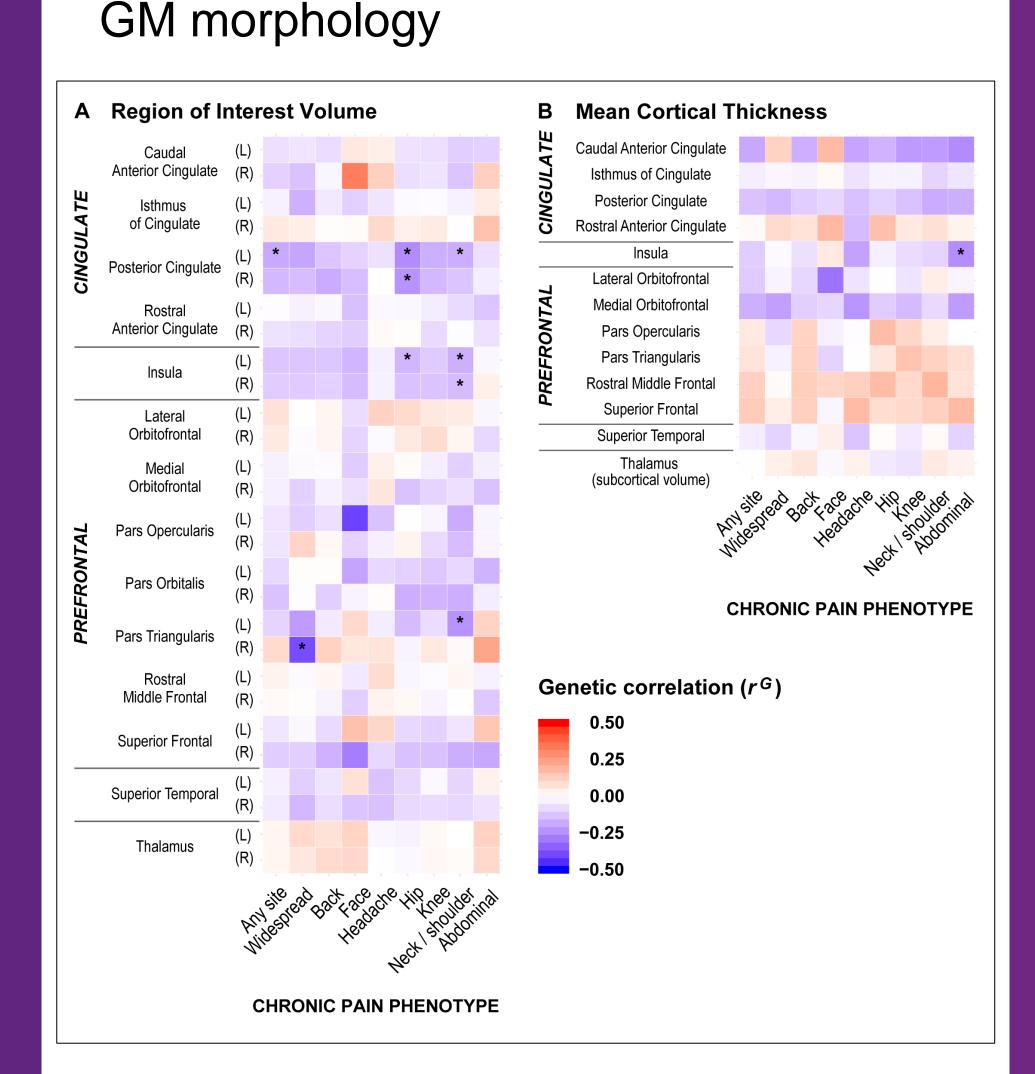


Results


 Ten (of 369) significant negative genetic correlations (*rG*) observed at insula, posterior cingulate & pars → Genes underlying reduced insula cortical thickness *causally contribute* to increased risk of chronic abdominal pain (*rG* [S.E.] = -0.25 [0.08], p = 1.06E-03; GCP [S.E.] = -0.69 [0.20], p = 4.96E-04)

Chronic pain	Brain region	MRI trait	<i>rG</i> (S.E.) p-value	GCP (S.E.) p-value
Hip pain	Left posterior	GMV	-0.25 (0.07)	0.22 (0.48)
	cingulate		2.08E-04	0.64
	Right	GMV	-0.24 (0.07)	0.43 (0.35)
	posterior cingulate		3.19È-04	0.21
	Left insula	GMV	-0.16 (0.06)	0.41 (0.37)
			4.17E-03	0.27
Neck / shoulder pain	Left insula	GMV	-0.17 (0.05)	-0.01 (0.30
			6.43E-04	0.96
	Right insula	GMV	-0.15 (0.05)	-0.07 (0.45
			1.41E-03	0.88
	Left posterior	GMV	-0.17 (0.06)	0.00 (0.42
	cingulate		2.09E-03	>0.99
	Left pars	GMV	-0.24 (0.08)	0.05 (0.37
	triangularis		3.50E-03	0.90
Abdominal	Mean insula	Cortical	-0.25 (0.08)	-0.69 (0.20
pain	(left & right)	thickness	1.06E-03	4.96E-04
Widespread	Right pars	GMV	-0.39 (0.12)	-0.08 (0.21
pain	triangularis		1.57E-03	0.72
Pain at any	Left posterior	GMV	-0.18 (0.05)	0.01 (0.58
site	cingulate		4.10E-04	0.99
•	· · ·		ey matter volume orrelation, S.E. –	

Table 2 Grey matter (GM) morphology traits with significant genetic correlation (*rG*; FDR < 5%) with chronic pain. A negative genetic correlation indicates the chronic pain condition is associated with lower values of the GM trait. A positive genetic correlation indicates the chronic pain condition is associated with higher values of the GM trait. Genetic causal proportion (GCP) indicates the likelihood of chronic pain affecting a trait (+ve values) or the trait affecting chronic pain (-ve values). GCP is significant (FDR < 5%) for mean insula cortical thickness in chronic abdominal pain, which suggests the genes underlying reduced insula cortical thickness causally contribute to an increased risk of chronic abdominal pain. For the other genetic correlations with non-significant GCP, reduced regional GM volume was associated with the chronic pain phenotypes but without evidence of a causal relationship between the traits



- Genome wide association studies (Fig. 1, Table 1):
 - \rightarrow Regional chronic pain conditions
 - N = 196,963 cases, N = 239,125 controls

Figure 1 Example genome wide association study (GWAS) for chronic neck/shoulder pain. Each dot represents a single nucleotide polymorphism (i.e.,

triangularis between MRI traits & chronic pain type (hip, neck/shoulder, abdominal, widespread pain, pain at any site) (Fig. 2) \rightarrow Indicates that genetic variants associated with chronic pain are also associated with reduced regional brain

Conclusions

- Structural brain differences in chronic pain conditions can be explained (in part) by shared genetic factors:
- → Insula, posterior cingulate & pars triangularis
- \rightarrow Neck/shoulder, hip, abdominal, widespread pain & pain at any site
- → Convergent evidence corroborating clinical phenotypic studies
- Causal relationship demonstrated between reduced mean insula cortical thickness and chronic abdominal pain

genetic variant). Red line denotes significance threshold (p < 5.00E-08). Full GWAS details for each chronic pain type available at <u>https://view.genoma.io</u>

Pain site	Total	
Any site	196,963	
Widespread	6,063	
Back	79,089	
Face	4,037	
Headache	39,283	
Hip	41,677	
Knee	77,996	
Neck/shoulder	72,216	
Abdominal	21,285	
Controls	239,125	
Table 1 Numbers of people in regional chronic pain and control groups		

Figure 2 Heatmaps for genetic correlations (rG) between the chronic pain phenotypes and MRI traits. (A) Region of interest volume and (B) mean cortical thickness (or subcortical volume as applicable). Asterisk denotes significant rGat 5% false discovery rate. Direction of correlation is shown by heatmap colours (i.e., red denotes positive rG and blue denotes negative rG), with darker shading indicating stronger genetic associations

Acknowledgements

We thank Graham Galloway (National Imaging Facility, Brisbane) for initial feedback on methodological approach. RECOVER Injury Research Centre (MS, SF) receives funding from the Motor Accident Insurance Commission (Qld). AIC is supported by a UQ Research Training Scholarship. PFK is supported by an Australian Government Research Training Program Scholarship from QUT. MER thanks the support of a fellowship from NHMRC (APP1102821). This research was initially carried out at the Translational Research Institute (TRI), Brisbane. TRI is supported by a grant from the Australian Government. The funders had no role in the design or interpretation of this study. GC-P contributed to this study while employed at UQ. He is now an employee of 23andMe Inc and he may hold stock or stock options from the company.

For more information, please contact Dr Scott Farrell scott.farrell@uq.edu.au

Accepted for publication in Brain

RECOVER Injury Research Centre

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

CREATE CHANGE